Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
iScience ; 26(5): 106634, 2023 May 19.
Article in English | MEDLINE | ID: covidwho-2293245

ABSTRACT

A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.

2.
mSphere ; 8(1): e0055822, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2223576

ABSTRACT

Several models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the in vivo efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains. Here, we compared the clinical progression, viral replication kinetics and dissemination, pulmonary tropism, and host innate immune response dynamics between the mouse-adapted MA10 strain and its parental strain (USA-WA1/2020) following intranasal inoculation of K18-hACE2 mice, a widely used model. Compared to its parental counterpart, the MA10 strain induced earlier clinical decline with significantly higher viral replication and earlier neurodissemination. Importantly, the MA10 strain also showed a wider tropism, with infection of bronchiolar epithelia. While both SARS-CoV-2 strains induced comparable pulmonary cytokine/chemokine responses, many proinflammatory and monocyte-recruitment chemokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10/CXCL10, and MCP-1/CCL2, showed an earlier peak in MA10-infected mice. Furthermore, both strains induced a similar downregulation of murine Ace2, with only a transient downregulation of Tmprss2 and no alterations in hACE2 expression. Overall, these data demonstrate that in K18-hACE2 mice, the MA10 strain has a pulmonary tropism that more closely resembles SARS-CoV-2 tropism in humans (airways and pneumocytes) than its parental strain. Its rapid replication and neurodissemination and early host pulmonary responses can have a significant impact on the clinical outcomes of infection and are, therefore, critical features to consider for study designs using these strains and mouse model. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, is still significantly impacting health care systems around the globe. Refined animal models are needed to study SARS-CoV-2 pathogenicity as well as efficacy of vaccines and therapeutics. In line with this, thorough evaluation of animal models and virus strains/variants are paramount for standardization and meaningful comparisons. Here, we demonstrated differences in replication dynamics between the Wuhan-like USA-WA1/2020 strain and the derivative mouse-adapted MA10 strain in K18-hACE2 mice. The MA10 strain showed accelerated viral replication and neurodissemination, differential pulmonary tropism, and earlier pulmonary innate immune responses. The observed differences allow us to better refine experimental designs when considering the use of the MA10 strain in the widely utilized K18-hACE2 murine model.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Humans , Animals , COVID-19/pathology , Angiotensin-Converting Enzyme 2/genetics , Pandemics , Lung/pathology , Virus Replication , Mice, Transgenic , Tropism
3.
Nature ; 615(7950): 143-150, 2023 03.
Article in English | MEDLINE | ID: covidwho-2185940

ABSTRACT

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virulence Factors , Virulence , Animals , Mice , Cell Line , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , COVID-19 Vaccines/immunology , Lung/cytology , Lung/virology , Virus Replication , Mutation
4.
Cell Rep ; 39(3): 110714, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-1773158

ABSTRACT

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Animals , COVID-19/genetics , Disease Models, Animal , Humans , Immunity, Innate , Lung/pathology , Macrophages , Mice , SARS-CoV-2
5.
Viruses ; 14(3)2022 03 05.
Article in English | MEDLINE | ID: covidwho-1732242

ABSTRACT

Animal models recapitulating COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Intranasally inoculated transgenic mice expressing human angiotensin-converting enzyme 2 under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. We evaluated the clinical and virological dynamics of SARS-CoV-2 using two intranasal doses (104 and 106 PFUs), with a detailed spatiotemporal pathologic analysis of the 106 dose cohort. Despite generally mild-to-moderate pneumonia, clinical decline resulting in euthanasia or death was commonly associated with hypothermia and viral neurodissemination independent of inoculation dose. Neuroinvasion was first observed at 4 days post-infection, initially restricted to the olfactory bulb suggesting axonal transport via the olfactory neuroepithelium as the earliest portal of entry. Absence of viremia suggests neuroinvasion occurs independently of transport across the blood-brain barrier. SARS-CoV-2 tropism was neither restricted to ACE2-expressing cells (e.g., AT1 pneumocytes), nor inclusive of some ACE2-positive cell lineages (e.g., bronchiolar epithelium and brain vasculature). Absence of detectable ACE2 protein expression in neurons but overexpression in neuroepithelium suggest this as the most likely portal of neuroinvasion, with subsequent ACE2 independent lethal neurodissemination. A paucity of epidemiological data and contradicting evidence for neuroinvasion and neurodissemination in humans call into question the translational relevance of this model.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Humans , Keratin-18 , Melphalan , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Viral Tropism , gamma-Globulins
6.
J Virol ; 95(19): e0086221, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1309804

ABSTRACT

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/physiology , Janus Kinases/metabolism , SARS-CoV-2/metabolism , Cell Line , Gene Expression Regulation , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Janus Kinase 1/metabolism , Myocytes, Cardiac , Receptor, Interferon alpha-beta/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , Virus Replication
7.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1247309

ABSTRACT

Globally, there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss after infection, decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology, and prevents viral pneumonia. Combined with the marked stability and low production cost, this innovative therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2/drug effects , Single-Domain Antibodies/administration & dosage , Administration, Inhalation , Aerosols/administration & dosage , Animals , Disease Models, Animal , Female , Male , Mesocricetus , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL